

CHALLENGES OF SUPER DEEP WELL (CASPI-1) IN THE PRE-CASPIAN BASIN

(A presentation on behalf of the Eurasia Project)

The Conceptual Exploration Project Program:

The project will be implemented in 3 stages

- Collection, processing and reinterpretation of existing geological and geophysical materials taken from past years
- II. Conducting large-scale complex geophysical studies, including the undertaking of regional seismic profiles (Geotraverse), in depth study (to a depth of 25-30 km.)
- III. Planning, programming and drilling of a superdeep (up to 15 km) parametric vertical exploration well

The projected budgetary investment for all three stages is estimated to be in the order of \$520 million United States Dollars spread over a 6 year period

ҚазМұнайГаз

A **Memorandum of Understanding** was signed on June 21, 2017 with all current interested parties (KazMunayGas, Agip, Rosneft, CNPC, SOCAR, NEOS) on the one hand and the Minister of Energy and Chairman of Geology Committee on the other hand on behalf of the RK Government. In the MOU signing ceremony Mr. RK Prime-Minister also Sagintayev, was present. After that, according to the MOU, negotiations are currently being held for creation of the Consortium with the companies which signed this document.

Also, regional geological & geophysical data from the Pre-Caspian basin are being at present collected and updated.

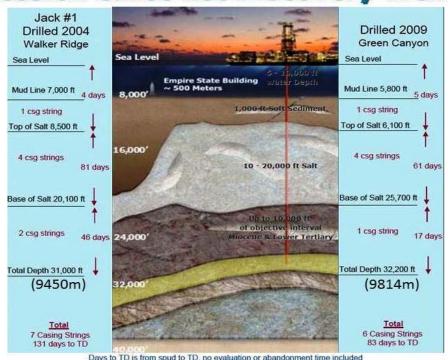
Historical Benchmarks

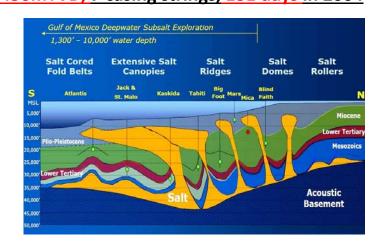
- KOLA well, Kola Peninsula, Russia, 1970-1994, Depth 12,262m. (Projected TVD 15km)
- Bertha Rodgers well, Oklahoma, USA, 1973-1974, Depth 9,583m. (Projected TVD 10km)
- > KTB well, Bavaria, Germany, 1990-1994, Depth 9,100m (Projected TVD 10km)

.....to a new generation of record breaking innovators who continue to push the limits

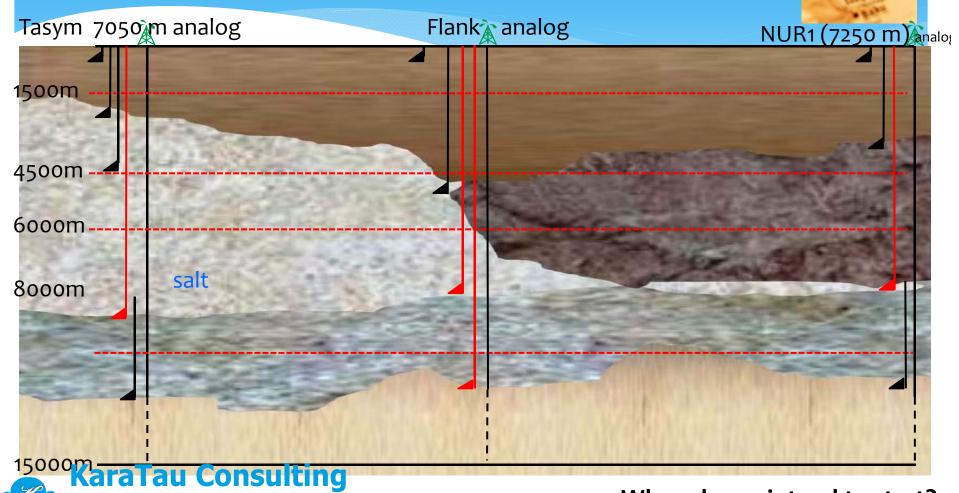
Recent Gulf of Mexico and Sakhalin-1 wells:

UNOCAL – Green Canyon 512 – 10,423m (vertical)	2005
▶ BHP – Green Canyon 817 – 10,353m (vertical)	<u>2010</u>
HESS Corp – Green Canyon 468 – 10,038m (vertical)	2007
Noble Energy – Mississippi Canyon 992 – 10,005m (vertical)	<u>2013</u>
Anadarko Corp – Walker Ridge 51 – 9,788m (vertical)	<u>2015</u>
➢ BP TIBER – Keathley Canyon 102 – 10,685m (vertical)	2009


> EXXON-ROSNEFT-ONGC-SODECO: Sakhalin/Orlan – 15,000mD/3600mTVD (horizontal) 2017


THE CHALLENGE OF A LIFETIM

Chevron's Wilcox Drilling Performance Progression Since 1st Discovery Well


CHEVRON USA GOM
Vertical Deep Water Drilling
Through massive salt sections
9450mTVD, 7 casing strings, 131 days in 2004

GREEN CANYON - 9759mTVD, 6 casing strings, 83 days in 2009

KaraTau Consulting

When do we intend to start? Where will the well be drilled?

THE CHALLENGE OF A LIFETIME

Technical Publications and Studies

The industry has already recognized that future exploration requires new equipment, processes and techniques. Recent technical papers published by the Society Of Petroleum Engineers report on a number of areas that are being addressed by operators and service companies alike as drilling reaches new depths and new challenges. The following are just a few of the papers published online (exact publication details can be provided by KTC or SPE):

- > Problems of Ultra-Deep High-Temperature, High-Pressure Drilling
- Ultra-Deep Drilling Pushes Drilling String Technology Innovations
- > Titanium Drill Pipe for Ultra-Deep and Deep Directional Drilling
- > Drilling Fluid Challenge During The Ultra-deep HT/HP/HS Drilling in The Mountainous Area, Tarim Basin
- > Formation Evaluation in Ultra-Deep Wells
- > Challenges of Drilling an Ultra-Deep Well in Deep water Spa Prospect.
- > Drilling of an Ultra-Deep Exploratory Well Problems and Solutions: A Case Study.
- > Drilling Technology of HTHP Ultra-Deep Well and the Crucial Technique Application

Some results of thinking outside the box:

(araTau Consulting

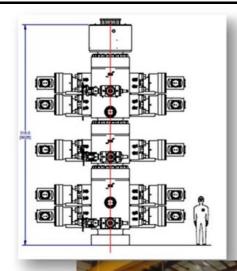
New technologies with new materials being used in modern sciences and other industries (the space sector, seismology, subsea surveying) are being investigated to help develop casing, wellhead equipment, geophysical tools, drilling fluids, drilling bits and other in-hole tools that can withstand the extreme down hole conditions that can be expected when drilling an ultra-deep well to 15000mTVD. Listed below are just a few of the recent advancements being made in equipment fundamentals required to undertake this ultra deep project:

- > Drilling rig capable of vertical drilling to 15000mTVD? **BENTEC's Giant Rig**
- > BOP & choke manifold rated @ 35,000 PSI? McMoRan-CAMERON 25,000 PSI EVO BOP
- > Drill pipe and casing grades and couplings rated for extreme loads at depths of 12000 to 15000m. VAM VALLOUREC
- Geophysical logging tools and in-hole mechanical tools (jars, bits, MWD, LWD, PDM, Turbines) capable of withstanding extreme pressures and temperatures. <a href="https://doi.org/10.1006/jars.2007.10

EURASIA PROJECT THE CHALLENGE OF A LIFETIME **BIG RIGS FOR DEEP OIL AND GAS**

Key Design of Main Drilling Rig

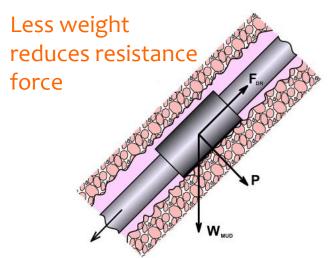
Hook load 750 t - 800 t Mast height - Triple or Quad stands (Range 2) Racking Capacity - 20,000m with BHA DP - 6 5/8" & 5" DP/HWDP with HT connections


TQ app. 90,000 ft-lbf/122,000 Nm Free Height under RT Beams - 9m minimum Substructure skiddable – multidirectional Standpipe - 7,500 psi / 518 bar HP - 3,900 I/min @ 420 bar = 3,660 HHP Pipe Handling mechanized, rig and catwalk max. 30", pipes in doubles

BIG BOP WELL CONTROL FOR DEEP OIL AND GAS

Investing in the Future – Technology

EVO™ 13-5/8" 25,000 psi BOP The industry's first



THE CHALLENGE OF A LIFETIME

BIG DRILL PIPE FOR DEEP OIL AND GAS

Vallourec solutions for ultra deep 15 km well

 High torque connection 	าร
--	----

- VAM Express
- VAM X-Force
- High strength Drill pipe grades
- High strength sour service grades

DP 5"	Tensile yield	Weight per meter	ID
S-135, 5", 0,361"wt	3167 kN	37,0 kg/м	108,7мм
VM-165 DP, 5", 0,3" wt	3251 kN	30,9 kg/м	111,8 MM
VM-165 DP, 5", 0,361"wt	3871 Kn	37,0 kg/м	108,7мм

* Weight per meter vs. resistance forces

THE CHALLENGE OF A LIFETIME

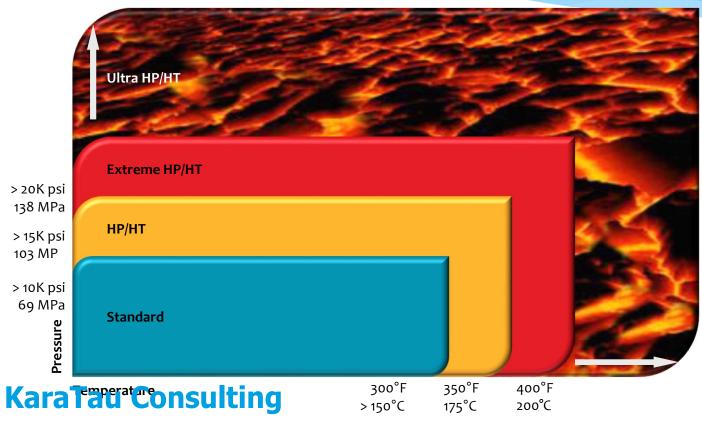
BIG CASING FOR DEEP OIL AND GAS

Vallourec solutions for ultra deep 15 km well

HP/HT connections for HP/HT applications

The below connections have been used on HPHT wells around the world

Name	Perf	Compression	OD range	Application	Segment
144 20 /HT	CAL IV	100%	5"-14"	Highest Performance Casing	Advanced
VAN TOPKIS	CALIV	100%	4 ½"-9 5/8"	High compression	Advanced
VAN TOUP CHT	CALIV	80%	4 ½"-7 5/8"	High Torque	Advanced
The Toll The	CAL IV	100%	2 3/8"-4 ½"	All tubing	Conventionnal
Csg*	NAMTEO3 to CALIV	60%-80%	5"-16"	All Casing	Conventionnal
TAME CHE	CALIV	60%	7 5/8"-10 ¾"	High external pressure - HPHT	Advanced
WAR CHITCE	CALIV	100%	4 ½"	High Torque	Advanced
	CAL II to CAL IV	70%	4 ½"-16"	Liner, Clearance Casing	Conventional
	NA	40%	2 3/8"-11 7/8"	Flush liner, Extra Clearance	Conventional
VAM LINES	CALIV	60%	4 ½"- 9 7/8"	High torque liner	Advanced
	NAM TEO3	60%	7 5/8"-10 ¾"	Salt dome, High collapse	Advanced
VAM SIS	NA	70%	4 ½"-5 1/2"	Shale gas	Conventional
	~ CAL II	100%	16"-18"	Offshore surface Csg	Advanced



THE CHALLENGE OF A LIFETIME

BIG SOLUTIONS FOR DEEP HPHT

HALLIBURTON

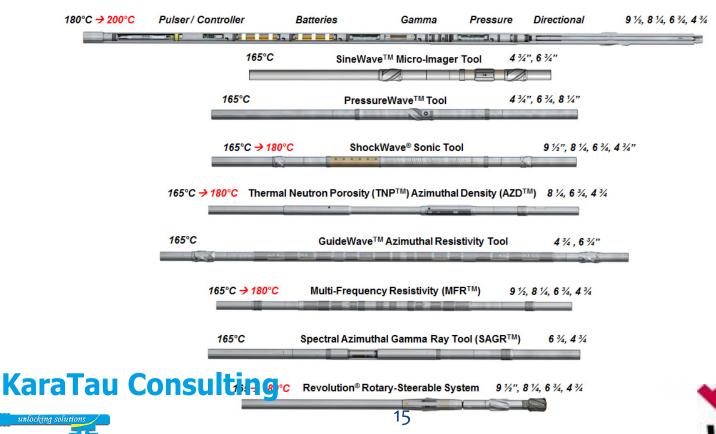
How HALLIBURTON defines HP/HT

EURASIA PROJECT THE CHALLENGE OF A LIFETIME BIG SOLUTIONS FOR DEEP HPHT

HALLIBURTON

HALLIBURTON drilling tools for HP/HT

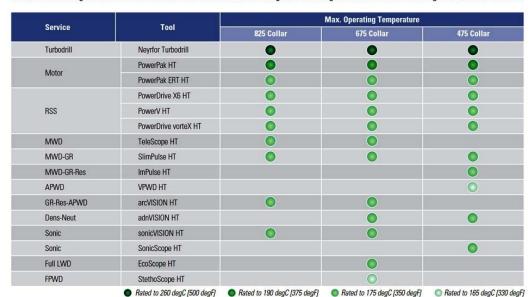
- Reduced NPT through zero-impact tool control and unprecedented reliability
- Excellent quality logging and cementing operations
- Longer bit life, fewer trips
- High dogleg capabilities in soft formation
- Rated up to 350°F/175°C and 30,000 psi

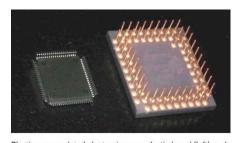


THE CHALLENGE OF A LIFETIME BIG SOLUTIONS FOR DEEP HPHT

WEATHERFORD LWD System 165-200 C, 30000 psi

HEL™ LWD



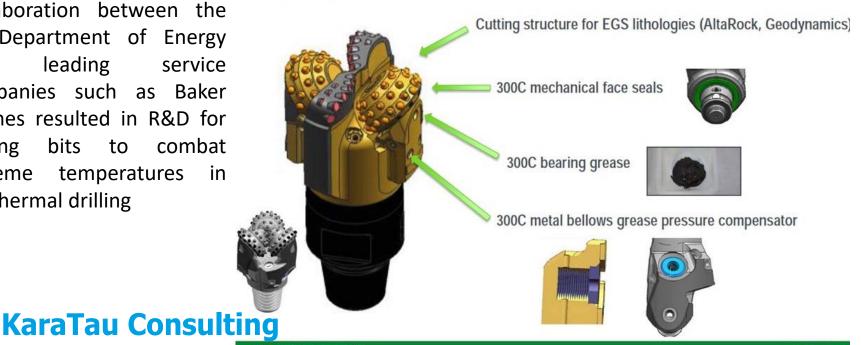

THE CHALLENGE OF A LIFETIME BIG SOLUTIONS FOR DEEP HPHT

SCHLUMBERGER

Reliable Schlumberger HT downhole tools reduce the risks inherent in drilling and evaluating HT wells. We have a full range of DD/MLWD services.

Plastic-encapsulated electronics on a plastic board (left), and ceramic-encapsulated electronics on a plastic board (right).

THE CHALLENGE OF A LIFETIME **BIG SOLUTIONS FOR HPHT GEOTHERMAL**

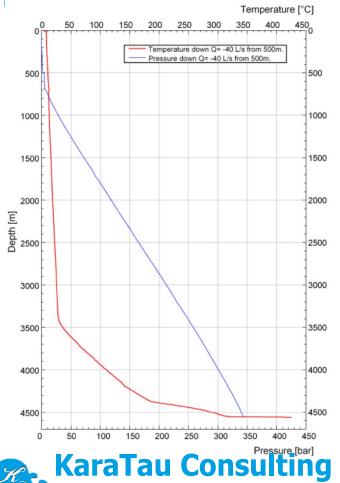


Scientific/Technical Approach

Energy Efficiency & Renewable Energy

300C Drill Bits

Collaboration between the US Department of Energy leading service and companies such as Baker Hughes resulted in R&D for drilling bits to combat extreme temperatures geothermal drilling


4 | US DOE Geothermal Office

EURASIA

EURASIA PROJECT

THE CHALLENGE OF A LIFETIME

DEEP GEOTHERMAL WELL PRODUCES INCREDIBLE BHT

Iceland's Deep Drilling Project geothermal well at Reykjanes successfully completed.

- Drilling of the IDDP-2 well was completed on the 25th of January 2017 at 4,659 meters depth.
- Temperature at the bottom of the well has already been measured at $\frac{427}{}^{\circ}$ C
- Bottom hole fluid pressure of 340 bars
- The drilling operation took 168 days since we began the drilling operation 11th August 2016.

THE CHALLENGE OF A LIFETIME

FUTURE COLLABORATIVE PARTNERS?

EURASIA

Japan's Agency for Marine-Earth Science and Technology's (JAMSTEC) largest drilling ship "Chiku" is planned to be used by a group of international researchers to drill into the Earth's mantle for the first time. The JAMSTEC team will conduct preliminary studies offshore Hawaii in September 2017 to determine if that's the best site to drill. Alternative sites are offshore Costa Rica and Mexico. Drilling will have to go through 4km of water and 6km of crust to reach the mantle. The Japanese government is providing partial funding for the project as part of a study on surface phenomena. The project will investigate the boundary between the oceanic crust and the mantle and also see if microbial life exists at that depth. They hope to begin drilling by 2030. First, they need to find the perfect location and figure out where to get the \$542 million 19funding the project needs.

ANY QUESTIONS? ANY IDEAS? ANY TOPICS FOR DISCUSSION?

Please contact us:

Baltabek Kuandykov – Chief project coordinator

Балтабек Куандыков – Главный координатор проекта

email: bmku@meridian-petroleum.kz

Alexander Denyakin – General Director KMG Eurasia

Александр Денякин — Генеральный Директор КМГ Евразия

email: alexander.denyakin@gmail.com

David Blackmore

Дэвид Блэкмор

Askar Dalbayev

Аскар Далбаев

Project consultant (+7 701 715 9732)

email: dwb@karatauconsulting.com

Project consultant (+7 701 761 6893)

email: asd@karatautauconsulting.com

Astana, 010000 8 Kunayev st, Block B, office 816 Тел: +7 7122 23 55 70/1/2 Астана, 010000 Ул. Кунаева 8, Блок B, офис 816, Тел: +7 7122 23 55 70/1/2

